Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 244

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Tracking the behavior and characteristics of microplastics using a multi-analytical approach; A Case study in two contrasting coastal areas of Japan

Battulga, B.; Atarashi-Andoh, Mariko; Matsueda, Makoto; Koarashi, Jun

Environmental Science and Pollution Research, 30(31), p.77226 - 77237, 2023/05

 Times Cited Count:0 Percentile:0(Environmental Sciences)

The global survey for the presence of microplastics (MPs) in aquatic environments has attracted widespread scientific attention over the past decade. This study demonstrates a multidimensional analytical approach, including isotopic and thermogravimetric analyses to evaluate characteristics and behavior of MPs in the environment. The MP samples were collected in two contrasting coastal areas of Japan. The $$delta$$$$^{13}$$C values of field-collected polyethylene (PE), polypropylene (PP), and polystyrene (PS) MPs were ranged from -25.6 to -31.4, -23.4 to -30.9, and -27.3 to -28.6 per mil, respectively. The differences in $$delta$$$$^{13}$$C signature between MPs with the same polymer types (i.e., PE and PP) but different colors. Through thermal analysis, the single-step endothermic process was observed for environmental PE and PS-MPs. The results reveal that degradation may play a significant role in the behavior and characteristics of MP debris in the aquatic environment.

JAEA Reports

Challenge to advancement of debris composition and direct isotope measurement by microwave-enhanced LIBS (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; i-lab*

JAEA-Review 2022-042, 67 Pages, 2023/01

JAEA-Review-2022-042.pdf:7.42MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Challenge to advancement of debris composition and direct isotope measurement by microwave-enhanced LIBS" conducted in FY2021. The present study aims to increase the emission intensity of LIBS (laser-induced breakdown spectroscopy) by superimposing MW (microwave) and apply it to uranium isotope measurement. In FY2021, after confirming that there was no problem in terms of specifications including noise leakage by downsizing the semiconductor MW oscillator and evaluating it as a single unit, the possibility of uranium isotope measurement was examined by applying it to the LIBS experiment. In addition, the optimized design of the MW antenna was carried out. By applying them, we confirmed the actual performance, …

Journal Articles

A New approach to extracting biofilm from environmental plastics using ultrasound-assisted syringe treatment for isotopic analyses

Battulga, B.; Atarashi-Andoh, Mariko; Nakanishi, Takahiro; Koarashi, Jun

Science of the Total Environment, 849, p.157758_1 - 157758_11, 2022/11

 Times Cited Count:3 Percentile:40.21(Environmental Sciences)

Characterizing plastic-associated biofilms is key to the better understanding of organic material and mineral cycling in the "Plastisphere"-the thin layer of microbial life on plastics. In this study, we propose a new method to extract biofilms from environmental plastics, in order to evaluate the properties of biofilm-derived organic matter through stable carbon ($$delta$$$$^{13}$$C) and nitrogen ($$delta$$$$^{15}$$N) isotope signatures and their interactions with radionuclides especially radiocesium ($$^{137}$$Cs). After ultrasound-assisted separation from the plastics, biofilm samples were successfully collected via a sequence of syringe treatments. Biofilm-derived organic matter samples (14.5-65.4 mg) from four river mouths in Japan showed $$^{137}$$Cs activity concentrations of $$<$$75 to 820 Bq kg$$^{-1}$$ biofilm (dw), providing evidence that environmental plastics, mediated by developed biofilms, serve as a carrier for $$^{137}$$Cs in the coastal environment. Significant differences in the ($$delta$$$$^{13}$$C and $$delta$$$$^{15}$$N signatures were also obtained for the biofilms, indicating the different sources, pathways, and development processes of biofilms on plastics.

JAEA Reports

Development of technology for rapid analysis of strontium-90 with low isotopic abundance using laser resonance ionization (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2022-014, 106 Pages, 2022/08

JAEA-Review-2022-014.pdf:10.42MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of technology for rapid analysis of strontium-90 with low isotopic abundance using laser resonance ionization" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. The present study aims to develop a rapid analysis technique for strontium-90 using diode laser-based resonance ionization with elemental and isotopic selectivity. Strontium-90 is one of the major difficult-to-measure nuclides released into the environment due to the accident at TEPCO's Fukushima Daiichi Nuclear Power Station.

Journal Articles

Estimated isotopic compositions of Yb in enriched $$^{176}$$Yb for producing $$^{177}$$Lu with high radionuclide purity by $$^{176}$$Yb($$d,x$$)$$^{177}$$Lu

Nagai, Yasuki*; Kawabata, Masako*; Hashimoto, Shintaro; Tsukada, Kazuaki; Hashimoto, Kazuyuki*; Motoishi, Shoji*; Saeki, Hideya*; Motomura, Arata*; Minato, Futoshi; Ito, Masatoshi*

Journal of the Physical Society of Japan, 91(4), p.044201_1 - 044201_10, 2022/04

 Times Cited Count:2 Percentile:44.06(Physics, Multidisciplinary)

Recently, $$^{177}$$Lu is considered as one of the most important medical RIs for treating neuroendocrine tumors. A plan to produce $$^{177}$$Lu with high purity by using enriched $$^{176}$$Yb samples with irradiation of deuteron beams in accelerators has been discussed. However, since the other Yb isotopes contained in the Yb sample interacts with deuterons, Lu isotopes other than $$^{177}$$Lu are produced as impurities. Since the purity of $$^{177}$$Lu is important for medical use, a method to evaluate the impurity of Lu has been required. In this study, we proposed a new method to estimate production yields of each Lu isotopes in Yb samples with arbitrary isotopic compositions by using excitation functions of Yb($$d,x$$)Lu reactions and the particle transport calculation code PHITS. The method plays an important role in discussing the isotopic composition of enriched samples to produce high-purity $$^{177}$$Lu using accelerators.

JAEA Reports

Challenge to advancement of debris composition and direct isotope measurement by microwave-enhanced LIBS (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; i-lab*

JAEA-Review 2021-027, 62 Pages, 2021/11

JAEA-Review-2021-027.pdf:3.06MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Challenge to advancement of debris composition and direct isotope measurement by microwave-enhanced LIBS" conducted in FY2020. Although LIBS (laser-induced breakdown spectroscopy) is commercially available for application to remote composition measurement, it is not suitable for high radiation environment due to loss in optical fibers derived from the influence of radiation, reduction in laser transmission output, and nuclear fuel debris properties. There are general concerns of the signal strength decrease. In addition, since LIBS is generally considered to be unsuitable for isotope measurement, there are problems to be improved.

Journal Articles

Isotope and plasma size scaling in ion temperature gradient driven turbulence

Idomura, Yasuhiro

Europhysics Conference Abstracts (Internet), 45A, 4 Pages, 2021/06

This work presents the impacts of the hydrogen isotope mass and the normalized plasma size on confinement of hydrogen (H) and deuterium (D) plasmas dominated by ion temperature gradient driven turbulence. Numerical experiments of H and D plasmas with ion and electron heating conditions were conducted using the Gyrokinetic Toroidal 5D full- f Eulerian code GT5D. The energy confinement time in the ion heated numerical experiments was almost independent of isotope mass, and the energy confinement was determined mainly by the normalized plasma size or the plasma size divided by the ion gyro radius, indicating an impact of non-local transport. On the other hand, the electron heated numerical experiments showed a clear isotope mass dependency. In addition to the plasma size effect, the isotope mass dependency of the collisional energy transfer from electrons to ions changes the ion heat flux and the turbulence intensity, leading to the degradation of confinement in H plasmas. These results qualitatively agree with the hydrogen isotope scaling in experiments.

JAEA Reports

Annual report of Department of Research Reactor and Tandem Accelerator, JFY2018 (Operation, utilization and technical development of JRR-3, JRR-4, NSRR, Tandem Accelerator, RI Production Facility and Tritium Process Laboratory)

Department of Research Reactor and Tandem Accelerator

JAEA-Review 2020-074, 105 Pages, 2021/03

JAEA-Review-2020-074.pdf:3.72MB

The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3 (Japan Research Reactor No.3), JRR-4 (Japan Research Reactor No.4), NSRR (Nuclear Safety Research Reactor), Tandem Accelerator, RI Production Facility and TPL (Tritium Process Laboratory). This annual report describes the activities of our department in fiscal year of 2018. We carried out the operation and maintenance, utilization, upgrading of utilization techniques, safety administration and international cooperation. Also contained are lists of publications, meetings, granted permissions on laws and regulations concerning atomic energy, outcomes in service and technical developments and so on.

JAEA Reports

Annual report of Department of Research Reactor and Tandem Accelerator, JFY2017 (Operation, utilization and technical development of JRR-3, JRR-4, NSRR, Tandem Accelerator, RI Production Facility and Tritium Process Laboratory)

Department of Research Reactor and Tandem Accelerator

JAEA-Review 2020-073, 113 Pages, 2021/03

JAEA-Review-2020-073.pdf:3.87MB

The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3 (Japan Research Reactor No.3), JRR-4 (Japan Research Reactor No.4), NSRR (Nuclear Safety Research Reactor), Tandem Accelerator, RI Production Facility and Tritium Process Laboratory. This annual report describes the activities of our department in fiscal year of 2017. We carried out the operation and maintenance, utilization, upgrading of utilization techniques, safety administration and international cooperation. Also contained are lists of publications, meetings, granted permissions on laws and regulations concerning atomic energy, outcomes in service and technical developments and so on.

JAEA Reports

Annual report of Department of Research Reactor and Tandem Accelerator, JFY2016 (Operation, utilization and technical development of JRR-3, JRR-4, NSRR, Tandem Accelerator, RI Production Facility and Tritium Process Laboratory)

Department of Research Reactor and Tandem Accelerator

JAEA-Review 2020-072, 102 Pages, 2021/03

JAEA-Review-2020-072.pdf:3.86MB

The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3 (Japan Research Reactor No.3), JRR-4 (Japan Research Reactor No.4), NSRR (Nuclear Safety Research Reactor), Tandem Accelerator, RI Production Facility and Tritium Process Laboratory). This annual report describes the activities of our department in fiscal year of 2016. We carried out the operation and maintenance, utilization, upgrading of utilization techniques, safety administration and international cooperation. Also contained are lists of publications, meetings, granted permissions on laws and regulations concerning atomic energy, outcomes in service and technical developments and so on.

JAEA Reports

Development of technology for rapid analysis of strontium-90 with low isotopic abundance using laser resonance ionization (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2020-024, 75 Pages, 2021/01

JAEA-Review-2020-024.pdf:5.43MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of Technology for Rapid Analysis of Strontium-90 with Low Isotopic Abundance using Laser Resonance Ionization" conducted in FY2019. In this study, we will develop a rapid analysis technique for strontium-90 using diode laser-based resonance ionization with elemental and isotopic selectivity. Strontium-90 is one of the major difficult-to-measure nuclides released into the environment due to the accident at TEPCO's Fukushima Daiichi Nuclear Power Station. Our method is particularly intended for real samples which contain high concentrations of strontium stable isotopes such as marine samples.

Journal Articles

Modeling the processes of hydrogen isotopes interactions with solid surfaces

Chikhray, Y.*; Askerbekov, S.*; Kenzhin, Y.*; Gordienko, Y.*; Ishitsuka, Etsuo

Fusion Science and Technology, 76(4), p.494 - 502, 2020/05

 Times Cited Count:1 Percentile:11.8(Nuclear Science & Technology)

JAEA Reports

Contribution to risk reduction in decommissioning works by the elucidation of basic property of radioactive microparticles (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; Ibaraki University*

JAEA-Review 2019-041, 71 Pages, 2020/03

JAEA-Review-2019-041.pdf:3.38MB

JAEA/CLADS, has been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") since FY2018. The Project aims at solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence has been collected from all over the world, and basic research and human resource development have been promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. Among the adopted proposals in FY2018, this report summarizes the research results of the "Contribution to Risk Reduction in Decommissioning Works by the Elucidation of Basic Property of Radioactive Microparticles". In order to establish the decommissioning procedures (recovery of the melted fuels, decontamination inside the reactors, ensuring the safety of the workers, etc.) of the Fukushima Daiichi Nuclear Power Station, radioactive microparticles released by the accident are an important information source for clarifying what had happened inside the reactors in the course of the accident. The purpose of the present study is to obtain detailed knowledge on the basic properties (particle size, composition, electrical/optical properties, etc.) of the radioactive microparticles, as well as to further elucidate the various properties of the radioactive microparticles including the quantitative evaluation of alpha-ray-emitters, through the Japan-UK synergetic research. Thus, we are conducting research and development that will contribute to the comprehensive works towards the risk reduction in the "decommissioning" plan.

JAEA Reports

Development of technology for rapid analysis of strontium-90 with low isotopic abundance using laser resonance ionization (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2019-027, 70 Pages, 2020/01

JAEA-Review-2019-027.pdf:5.18MB

JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of Technology for Rapid Analysis of Strontium-90 with Low Isotopic Abundance Using Laser Resonance Ionization". In this study, we will develop a rapid analysis technique for strontium-90 using diode laser-based resonance ionization with elemental and isotopic selectivity. Strontium-90 is one of the major difficult-to-measure nuclides released into the environment due to the accident at Tokyo Electric Power Company (TEPCO)'s Fukushima Daiichi Nuclear Power Station. Our method is particularly intended for real samples which contain high concentrations of strontium stable isotopes such as marine samples.

Journal Articles

In-source laser spectroscopy of dysprosium isotopes at the ISOLDE-RILIS

Chrysalidis, K.*; Barzakh, A. E.*; Ahmed, R.*; Andreyev, A. N.; Ballof, J.*; Cubiss, J. G.*; Fedorov, D. V.*; Fedosseev, V. N.*; Fraile, L. M.*; Harding, R. D.*; et al.

Nuclear Instruments and Methods in Physics Research B, 463, p.472 - 475, 2020/01

 Times Cited Count:3 Percentile:35.72(Instruments & Instrumentation)

A number of radiogenically produced dysprosium isotopes have been studied by in-source laser spectroscopy at ISOLDE using the Resonance Ionization Laser Ion Source (RILIS). Isotope shifts were measured relative to $$^{152}$$Dy in the $$4f^{10}6s^{2}~^{5}I_{8}$$ (gs) $$rightarrow$$ $$4f^{10}6s6p~(8,1)^{0}_{8}$$ (418.8 nm $$_{rm VAC}$$)resonance transition. The electronic factor, $$F$$, and mass shift factor, M, were extracted and used for determining the changes in mean-squared charge radii for $$^{rm 145m}$$Dy and $$^{rm 147m}$$Dy for the first time.

Journal Articles

Isotope and plasma size scaling in ion temperature gradient driven turbulence

Idomura, Yasuhiro

Physics of Plasmas, 26(12), p.120703_1 - 120703_5, 2019/12

 Times Cited Count:5 Percentile:33.23(Physics, Fluids & Plasmas)

This Letter presents the impacts of the hydrogen isotope mass and the normalized gyroradius $$rho^*$$ on L-mode like hydrogen (H) and deuterium (D) plasmas dominated by ion temperature gradient driven (ITG) turbulence using global full-f gyrokinetic simulations. In ion heated numerical experiments with adiabatic electrons, the energy confinement time shows almost no isotope mass dependency, and is determined by Bohm like $$rho^*$$ scaling. Electron heated numerical experiments with kinetic electrons show clear isotope mass dependency caused by the isotope effect on the collisional energy transfer from electrons to ions, and the H and D plasmas show similar ion and electron temperature profiles at an H to D heating power ratio of $$sim 1.4$$. The normalized collisionless ion gyrokinetic equations for H and D plasmas become identical at the same $$rho^*$$, and collisions weakly affect ITG turbulence. Therefore, the isotope mass dependency is mainly contributed by the $$rho^*$$ scaling and the heating sources.

Journal Articles

Conceptual design of direct $$^{rm 99m}$$Tc production facility at the high temperature engineering test reactor

Ho, H. Q.; Ishida, Hiroki*; Hamamoto, Shimpei; Ishii, Toshiaki; Fujimoto, Nozomu*; Takaki, Naoyuki*; Ishitsuka, Etsuo

Nuclear Engineering and Design, 352, p.110174_1 - 110174_7, 2019/10

 Times Cited Count:1 Percentile:10.81(Nuclear Science & Technology)

Journal Articles

Laser-induced breakdown spectroscopy and related resonance spectroscopy for nuclear fuel cycle management and for decommissioning of "Fukushima Daiichi Nuclear Power Station"

Wakaida, Ikuo; Oba, Hironori; Miyabe, Masabumi; Akaoka, Katsuaki; Oba, Masaki; Tamura, Koji; Saeki, Morihisa

Kogaku, 48(1), p.13 - 20, 2019/01

By Laser Induced Breakdown Spectroscopy and by related resonance spectroscopy, elemental and isotope analysis of Uranium and Plutonium for nuclear fuel materials and in-situ remote analysis under strong radiation condition for melt downed nuclear fuel debris at damaged core in "Fukushima Daiichi Nuclear Power Station", are introduced and performed as one of the application in atomic energy research field.

Journal Articles

Progress of neutron-capture cross-section measurements promoted by ImPACT project at ANNRI in MLF of J-PARC

Nakamura, Shoji; Kimura, Atsushi; Hales, B. P.; Iwamoto, Osamu; Shibahara, Yuji*; Uehara, Akihiro*; Fujii, Toshiyuki*

JAEA-Conf 2018-001, p.199 - 203, 2018/12

Study on cross-section measurements has been promoted for $$^{135}$$Cs among long-lived fission products in ImPACT Project. The feasibility study on $$^{79}$$Se sample preparation also has been conducted to measure its cross sections in future. During the feasibility study, we started the neutron-capture cross-section measurements of stable Se isotopes. This paper reports research progresses on preparation of a radioactive $$^{135}$$Cs sample, neutron irradiation experiments with the Cs sample, and cross-section measurements of stable Se isotopes.

Journal Articles

Feasibility study of large-scale production of iodine-125 at the high temperature engineering test reactor

Ho, H. Q.; Honda, Yuki*; Hamamoto, Shimpei; Ishii, Toshiaki; Fujimoto, Nozomu*; Ishitsuka, Etsuo

Applied Radiation and Isotopes, 140, p.209 - 214, 2018/10

 Times Cited Count:3 Percentile:29.78(Chemistry, Inorganic & Nuclear)

244 (Records 1-20 displayed on this page)